PROSZĘ O POMOC! 4/19 ćwiczenia klasa 8: Wpisz przy rysunkach długości zaznaczonych odcinków. Do marynowania podgrzybków potrzebny jest ocet 6-procentowy. Pani Kowalska kupiła 1 litr octu 10-procentowego. ile wody powinna dolać do zakupionek oc …

zapytał(a) o 23:27 Dane są punkty A(-5,-1), B(-1,-3), C(,1,1) a)napisz równanie prostej ABb)oblicz długość odcinka ABc)napisz równanie prostej zawierającej wysokość trójkąta i przechodzącej przez wierzchołek Cd)oblicz długość wysokości poprowadzonej z wierzchołka Ce)wyznacz środek odcinka ABf)napisz równanie środkowej trójkąta poprowadzonej z wierzchołka Cg)napisz równanie symetralnej odcinka ABh)oblicz obwód trójkątai)oblicz pole trójkąta ABC Ja z takich przedmiotów jak matma fizyka kompletnie nic nie rozumiem więdz prosił bym o rozwiązanie
Dane są trzy punkty B, U, K, które NIE LEŻĄ na jednej prostej. Ile prostych możesz poprowadzić przez te punkty? 2012-11-19 19:35:31; dane są trzy punkty,które nieleżą na jednrj prostej ile prostych możesz przeprowadzić przez te punkty? 2010-10-18 18:52:13; Kiedy 2 punkty są symetryczne względem prostej? 2010-05-12 18:03:23
Długość odcinka o końcach w punktach \(A=(x_1,y_1)\) oraz \(B=(x_2,y_2)\) wyraża się wzorem: \[|AB|=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\] Wzór na długość odcinka można wyprowadzić z twierdzenia Pitagorasa dla trójkąta prostokątnego \(ABC\): \[\begin{split} |AB|^2&=|AC|^2+|BC|^2\\[6pt] |AB|&=\sqrt{|AC|^2+|BC|^2}\\[6pt] |AB|&=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \end{split}\] Dane są punkty \(P=(-2,-2)\), \(Q=(3,3)\). Odległość punktu \(P\) od punktu \(Q\) jest równa A.\( 1 \) B.\( 5 \) C.\( 5\sqrt{2} \) D.\( 2\sqrt{5} \) CDługość odcinka \( AB \), którego wierzchołki mają współrzędne \( A=(-3,-2) \) i \( B=(-1,4) \), jest równa A.\(2\sqrt{5} \) B.\(2\sqrt{10} \) C.\(4\sqrt{2} \) D.\(\sqrt{41} \) BDane są punkty \(A=(1,-4)\) i \(B=(2,3)\). Odcinek \(AB\) ma długość A.\( 1 \) B.\( 4\sqrt{3} \) C.\( 5\sqrt{2} \) D.\( 7 \) CNa okręgu o środku \(S=(-6,1)\) leży punkt \(A=(-2,4)\). Promień tego okręgu jest równy A.\(5\) B.\(7\) C.\(\sqrt{73}\) D.\(\sqrt{7}\) APunkty \(B = (−2, 4)\) i \(C = (5, 1)\) są dwoma sąsiednimi wierzchołkami kwadratu \(ABCD\). Pole tego kwadratu jest równe A.\( 74 \) B.\( 58 \) C.\( 40 \) D.\( 29 \) BPunkty \( A=(-1,3)\) i \(C=(7,9) \) są przeciwległymi wierzchołkami prostokąta \( ABCD \). Promień okręgu opisanego na tym prostokącie jest równy A.\(10 \) B.\(6\sqrt{2} \) C.\(5 \) D.\(3\sqrt{2} \) CPunkty \(A=(1,-2)\), \(C=(4,2)\) są dwoma wierzchołkami trójkąta równobocznego \(ABC\). Wysokość tego trójkąta jest równa A.\( \frac{5\sqrt{3}}{2} \) B.\( \frac{5\sqrt{3}}{3} \) C.\( \frac{5\sqrt{3}}{6} \) D.\( \frac{5\sqrt{3}}{9} \) APunkty \(A=(-3,-1)\), \(B=(2,5)\) są dwoma wierzchołkami trójkąta równobocznego \(ABC\). Pole tego trójkąta jest równe A.\( \frac{\sqrt{183}}{2} \) B.\( \frac{61\sqrt{3}}{2} \) C.\( \frac{61\sqrt{3}}{4} \) D.\( \frac{11\sqrt{3}}{4} \) CPunkty \(B=(0,0)\), \(C=(3,0)\) są dwoma wierzchołkami trójkąta równobocznego \(ABC\). Obwód tego trójkąta jest równy A.\( 3 \) B.\( 9 \) C.\( \frac{3\sqrt{3}}{2} \) D.\( \frac{9\sqrt{3}}{4} \) BPunkty \( A=(-1,2) \) i \( B=(2,6) \) są wierzchołkami kwadratu \( ABCD \). Pole tego kwadratu jest równe: A.\(17 \) B.\(65 \) C.\(25 \) D.\(7 \) CDany jest okrąg o środku \(S=(−6,−8)\) i promieniu \(2014\). Obrazem tego okręgu w symetrii osiowej względem osi \(Oy\) jest okrąg o środku w punkcie \(S_1\). Odległość między punktami \(S\) i \(S_1\) jest równa A.\( 12 \) B.\( 16 \) C.\( 2014 \) D.\( 4028 \) APunkty \(E = (7,1)\) i \(F = (9,7)\) to środki boków, odpowiednio \(AB\) i \(BC\) kwadratu \(ABCD\). Przekątna tego kwadratu ma długość A.\( 4\sqrt{5} \) B.\( 10 \) C.\( 4\sqrt{10} \) D.\( 20 \) C (4•3):2 = 12:2 = 6. b) Żeby wyznaczyć półprostą również niezbędne są dwa punkty, ale jednym z nich jest zawsze początek półprostej (drugi to dowolny punkt leżący na tej prostej) Skoro żadne trzy z podanych punktów nie są współliniowe, to z każdym możemy wyznaczyć trzy różne półproste (np. z punktem C: CB, CA i CD) setch Użytkownik Posty: 1307 Rejestracja: 14 sie 2006, o 22:37 Płeć: Mężczyzna Lokalizacja: Bełchatów Podziękował: 155 razy Pomógł: 208 razy Dane sa 3 punkty... a) Dane są trzy punkty A, B, C. Jaka jest najmniejsza figura wypukła zawierająca te trzy punkty? b) Dane są cztery punkty A, B, C, D. Jaka jest namniejsza figura wypukła zawierająca te cztery punkty? a) Gdy punkty są współliniowe jest to odcinek. Gdy nie są współliniowe jest to \(\displaystyle{ \Delta_{ABC}}\) b) Gdy są współliniowe jest to odcinke. Gdy nie są współliniowe to?
W tej nauce jednak zwrócimy uwagę na wzajemne położenie prostej i okręgu w układzie współrzędnych. Dany jest okrąg o równaniu: - środek okręgu. - promień okręgu. oraz prosta o równaniu. . jest to odległość punktu od prostej , czyli: Prosta i okrąg: mają dwa punkty wspólne, jeżeli.
affi Użytkownik Posty: 5 Rejestracja: 11 lis 2004, o 16:45 Jak sprawdzić, czy 3 punkty są współliniowe Jak obliczyć czy punkty są współliniowe A=(0;3) B=(2,4) C=(-200;-97) Prosze o wytłumaczenie lub tylko na podanie drogi do celu... arigo Użytkownik Posty: 852 Rejestracja: 23 paź 2004, o 10:17 Płeć: Mężczyzna Lokalizacja: Lublin Pomógł: 28 razy Jak sprawdzić, czy 3 punkty są współliniowe Post autor: arigo » 11 lis 2004, o 16:54 napisz wzor funkcji przechodzacej przez punkty A i B a nastepnie sprawdz czy punkt C nalezy do tej prostej affi Użytkownik Posty: 5 Rejestracja: 11 lis 2004, o 16:45 Jak sprawdzić, czy 3 punkty są współliniowe Post autor: affi » 11 lis 2004, o 17:09 czyli w praktyce jak to będzie wyglądało ? Yavien Użytkownik Posty: 800 Rejestracja: 21 cze 2004, o 22:20 Płeć: Kobieta Lokalizacja: W-U Jak sprawdzić, czy 3 punkty są współliniowe Post autor: Yavien » 11 lis 2004, o 17:13 Prosta ma wzor y= a*x + b, Punkty A (o wspolrzednej x = 0 i y = 3) oraz B (o wspolrzednej x = 2 i y = 4) spelniaja ten wzor --> podstawiasz ich wspolrzedne do wzoru --> wyliczasz a i b (z ukladu dwoch rownan). Potem wstawiasz do wzoru wspolrzedne punktu C i sprawdzasz, czy sie zgadza Skrzypu Użytkownik Posty: 1146 Rejestracja: 18 maja 2004, o 22:15 Płeć: Mężczyzna Lokalizacja: Kraków Pomógł: 18 razy Jak sprawdzić, czy 3 punkty są współliniowe Post autor: Skrzypu » 11 lis 2004, o 17:33 Powinno wyjść, że wszystkie 3 punkty są współliniowe affi Użytkownik Posty: 5 Rejestracja: 11 lis 2004, o 16:45 Jak sprawdzić, czy 3 punkty są współliniowe Post autor: affi » 11 lis 2004, o 17:39 czyli to bedzie wyglądało tak : y=ax+b 3=b 4=2a+b a=1/2 1/2 * (-200) = -100 -100 + 3 = -97 tak? czy sie myle Yavien Użytkownik Posty: 800 Rejestracja: 21 cze 2004, o 22:20 Płeć: Kobieta Lokalizacja: W-U Jak sprawdzić, czy 3 punkty są współliniowe Post autor: Yavien » 11 lis 2004, o 18:46 Dobrze zrobiles, a jaki wniosek? Są współliniowe? affi Użytkownik Posty: 5 Rejestracja: 11 lis 2004, o 16:45 Jak sprawdzić, czy 3 punkty są współliniowe Post autor: affi » 11 lis 2004, o 18:50 Punkty A ; B ; C o współrzędnych podanych wyżej są współliniowe . Yavien Użytkownik Posty: 800 Rejestracja: 21 cze 2004, o 22:20 Płeć: Kobieta Lokalizacja: W-U Jak sprawdzić, czy 3 punkty są współliniowe Post autor: Yavien » 11 lis 2004, o 18:50 Świetnie affi Użytkownik Posty: 5 Rejestracja: 11 lis 2004, o 16:45 Jak sprawdzić, czy 3 punkty są współliniowe Post autor: affi » 11 lis 2004, o 20:22 Mam jeszce takie jedno zadanie z którym mam problem . Należy znakleść wzór funkcji , której wykresem jest prosta zawierająca średnicę narysowanego okręgu , równoległą do cięciwy AB . Tu znajduje sie obrazek (ta większa kropka to środek okręgu,a te mniejsze to punkty na prostej). Yavien Użytkownik Posty: 800 Rejestracja: 21 cze 2004, o 22:20 Płeć: Kobieta Lokalizacja: W-U Jak sprawdzić, czy 3 punkty są współliniowe Post autor: Yavien » 11 lis 2004, o 20:43 Prosta rownolegla do prostej o rownaniu y = ax+b ma ten sam wspolczynnik kierunkowy 'a', czyli rownanie prostej rownoleglej to bedzie y = ax + c Liczysz rownanie prostej przechodzacej przez A i B, potem liczysz rownanie prostej rownoleglej (wspolczynnik a masz, a drugi wspolczynnik liczysz, wstawiajac wspolrzedne srodka okregu) wykaż że wartość wyrażenia w=26- ((7 + 13 1/2) ^1/2 + (7-13 1/2)1/2)^2 = 0 zadanie w zalaczniku prosze o pomoc jeśli cenę roweru obniżymy o 20% to kosztowałby 640zł ile kosztuje teraz Punkty A(-4,0),B(4,4),C(-5,7) są wierzchołkami trójkąta. Odcinek CD jest wysokością tego trójkąta. Oblicz: a) współrzędne punktu D b) długość wysokości CD
Skoro odległość punktu A od osi OX jest równa 4, zatem współrzędna drugiego punktu również musi być oddalona o 4 jednostaki od tej osi, ale w dół, zatem ta współrzędna będzie równa -4, czyli: m-2 = -4. m = -4 + 2. m = -2. Odp: k = 3/7; m = -2. 2. Punkty C = ( 3a,5) i D = (7, b-1 ) są symetryczne do siebie względem osi y
Dane są punkty o współrzędnych A=(-2,5) oraz B=(4,-1). Średnica okręgu wpisanego w kwadrat o boku AB jest równa Punkt C leży wewnątrz koła o średnicy AB. Czegoś się nauczyłam. 5/5 ⭐. Wiele szczegółów 👍. Dobrze wyjaśnione. Świetna odpowiedź. Dane są trzy punkty a= (-7,-4) B= (2, 10) i C= (-2,8) Punkty A i B są końcami średnicy pewnego koła Natychmiastowa odpowiedź na Twoje pytanie. .
  • 51fh2c9fpr.pages.dev/442
  • 51fh2c9fpr.pages.dev/443
  • 51fh2c9fpr.pages.dev/474
  • 51fh2c9fpr.pages.dev/830
  • 51fh2c9fpr.pages.dev/408
  • 51fh2c9fpr.pages.dev/861
  • 51fh2c9fpr.pages.dev/95
  • 51fh2c9fpr.pages.dev/40
  • 51fh2c9fpr.pages.dev/520
  • 51fh2c9fpr.pages.dev/140
  • 51fh2c9fpr.pages.dev/531
  • 51fh2c9fpr.pages.dev/179
  • 51fh2c9fpr.pages.dev/560
  • 51fh2c9fpr.pages.dev/961
  • 51fh2c9fpr.pages.dev/773
  • dane są trzy punkty a 7 4